end0tknr's kipple - 新web写経開発

http://d.hatena.ne.jp/end0tknr/ から移転しました

2017-05-14から1日間の記事一覧

固有値、固有ベクトル

主成分分析に利用する為、おさらい。 その他、シュレーディンガー方程式(量子力学)、マルコフ連鎖、グラフ理論 でも利用されるらしいが、対角行列に変換できることに関係するのかな?、まっ、今回は単なるおさらいなので、気にしませんが 定義 n次正方行列Aに…

正弦定理の証明

正弦定理は、なんとか…記憶にありましたが、余弦定理のついでに 正弦定理とは? ただし、Rは外接円の半径。 正弦定理の証明 先程の余弦定理と同様、∠Aが鋭角,直角,鈍角に分け、導出します (正弦)鋭角 まず、点Bと円の中心を通るBDを描くと、 BDは円の中心を通…

余弦定理の証明

こうも忘れていると「そもそも当時、理解してたの?」と思いますが、 余弦定理と正弦定理もすっかり忘れていたので、以下、自分用メモ。 まずは、余弦定理から 余弦定理とは? 余弦定理の証明 ∠Aが鋭角,直角,鈍角に分け、導出します (余弦)鋭角 上記のように補…

ベクトルの内積、内積の成分表示、シュミットの正規直交化法

シュミットの正規直交化法をすっかり忘れていたので、基本からのメモ 内積の定義 ※ や は、ベクトルの大きさ(ノルム) 内積の成分表示 2次元ベクトル 3次元ベクトル 内積の成分表示の証明(2次元ベクトルにおける導出) bの反対ベクトル(-b)とで形成される△ADE…