end0tknr's kipple - web写経開発

太宰府天満宮の狛犬って、妙にカワイイ

numpy for python による CNN (Convolutional Neural Network)

「ゼロから作るDeep Learning ① (Pythonで学ぶディープラーニングの理論と実装)」 p.229~233 の写経です。

ここまでで理解が深まった気がしますが、 様々、ありすぎて、理解できていない部分もあると思います。

# coding: utf-8
import sys, os
import numpy as np
import matplotlib.pyplot as plt
import urllib.request
import gzip
import pickle
from collections import OrderedDict

def main():
    # data読み込み (これまでの例と異なり、flatten=False )
    mymnist = MyMnist()
    (x_train, t_train, x_test, t_test) = mymnist.load_mnist(flatten=False)

    # 時間のかかる場合、はデータを削減 
    x_train, t_train = x_train[:5000],t_train[:5000]
    x_test, t_test   = x_test[:1000], t_test[:1000]

    max_epochs = 20

    # 訓練/学習
    network = SimpleConvNet(input_dim=(1,28,28), 
                            conv_param = {'filter_num': 30,
                                          'filter_size': 5,
                                          'pad': 0,
                                          'stride': 1},
                            hidden_size=100,
                            output_size=10,
                            weight_init_std=0.01)

    trainer = Trainer(network, x_train, t_train, x_test, t_test,
                      epochs=max_epochs, mini_batch_size=100,
                      optimizer='Adam', optimizer_param={'lr': 0.001},
                      evaluate_sample_num_per_epoch=1000)
    trainer.train()

    # パラメータの保存
    network.save_params("params.pkl")
    print("Saved Network Parameters!")

    # グラフの描画
    markers = {'train': 'o', 'test': 's'}
    x = np.arange(max_epochs)
    plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
    plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
    plt.xlabel("epochs")
    plt.ylabel("accuracy")
    plt.ylim(0, 1.0)
    plt.legend(loc='lower right')
    plt.show()

class MyMnist:
    def __init__(self):
        pass

    def load_mnist(self,flatten=True):
        data_files = self.download_mnist()
        # convert numpy
        dataset = {}
        dataset['train_img']   = self.load_img(  data_files['train_img'] )
        dataset['train_label'] = self.load_label(data_files['train_label'])
        dataset['test_img']    = self.load_img(  data_files['test_img']  )
        dataset['test_label']  = self.load_label(data_files['test_label'])

        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0

        for key in ('train_label','test_label'):
            dataset[key]=self.change_one_hot_label( dataset[key] )

        # 画像を一次元配列(平)にしない場合
        if not flatten:
             for key in ('train_img', 'test_img'):
                dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
                
        return (dataset['train_img'],
                dataset['train_label'],
                dataset['test_img'],
                dataset['test_label'] )

    def change_one_hot_label(self,X):
        T = np.zeros((X.size, 10))
        for idx, row in enumerate(T):
            row[X[idx]] = 1
        return T
    
    def download_mnist(self):
        url_base = 'http://yann.lecun.com/exdb/mnist/'
        key_file = {'train_img'  :'train-images-idx3-ubyte.gz',
                    'train_label':'train-labels-idx1-ubyte.gz',
                    'test_img'   :'t10k-images-idx3-ubyte.gz',
                    'test_label' :'t10k-labels-idx1-ubyte.gz' }
        data_files = {}
        dataset_dir = os.path.dirname(os.path.abspath(__file__))
        
        for data_name, file_name in key_file.items():
            req_url   = url_base+file_name
            file_path = dataset_dir + "/" + file_name

            request  = urllib.request.Request( req_url )
            response = urllib.request.urlopen(request).read()
            with open(file_path, mode='wb') as f:
                f.write(response)
                
            data_files[data_name] = file_path
        return data_files

    def load_img( self,file_path):
        img_size    = 784 # = 28*28
        
        with gzip.open(file_path, 'rb') as f:
            data = np.frombuffer(f.read(), np.uint8, offset=16)
        data = data.reshape(-1, img_size)
        return data
    
    def load_label(self,file_path):
        with gzip.open(file_path, 'rb') as f:
            labels = np.frombuffer(f.read(), np.uint8, offset=8)
        return labels

    
# conv - relu - pool - affine - relu - affine - softmax
class SimpleConvNet:

    def __init__(self,
                 input_dim=(1, 28, 28), # チャンネル、高さ、幅
                 conv_param={
                     'filter_num':30,
                     'filter_size':5,
                     'pad':0,               #CNNのpadding
                     'stride':1},           #CNNのstride
                 hidden_size=100,           #隠れ層のneuron数
                 output_size=10,            #出力層の〃
                 weight_init_std=0.01):     #初期化時の重みの標準偏差 ※
        # ※ relu or he の場合、「Heの初期値」
        #    sigmoid or xavierの場合、「Xavierの初期値」

        filter_num    = conv_param['filter_num']
        filter_size   = conv_param['filter_size']
        filter_pad    = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = \
            (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = \
            int(filter_num * (conv_output_size/2) * (conv_output_size/2))

        # 重みの初期化
        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num,
                                            input_dim[0],
                                            filter_size,
                                            filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        # レイヤの生成
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(
            self.params['W1'],
            self.params['b1'],
            conv_param['stride'],
            conv_param['pad'])

        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """損失関数を求める
        引数のxは入力データ、tは教師ラベル
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt) 

        return acc / x.shape[0]

    # 勾配(数値微分). x:入力data、t:教師label
    def numerical_gradient(self, x, t):
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = \
                self._numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = \
                self._numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def _numerical_gradient(self, f, x):
        h = 1e-4 # 0.0001
        grad = np.zeros_like(x)

        it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
        while not it.finished:
            idx = it.multi_index
            tmp_val = x[idx]
            x[idx] = tmp_val + h
            fxh1 = f(x) # f(x+h)

            x[idx] = tmp_val - h 
            fxh2 = f(x) # f(x-h)
            grad[idx] = (fxh1 - fxh2) / (2*h)

            x[idx] = tmp_val # 値を元に戻す
            it.iternext()   

        return grad

    # 勾配 (誤差逆伝搬法). x:入力data、t:教師label
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 設定
        grads = {}
        grads['W1'] = self.layers['Conv1'].dW
        grads['b1'] = self.layers['Conv1'].db
        grads['W2'] = self.layers['Affine1'].dW
        grads['b2'] = self.layers['Affine1'].db
        grads['W3'] = self.layers['Affine2'].dW
        grads['b3'] = self.layers['Affine2'].db

        return grads

    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

            
class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad
        
        # 中間data (backwardに使用)
        self.x = None   
        self.col = None
        self.col_W = None
        
        # 重み・バイアスパラメータの勾配
        self.dW = None
        self.db = None

    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = 1 + int((H + 2*self.pad - FH) / self.stride)
        out_w = 1 + int((W + 2*self.pad - FW) / self.stride)

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T

        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        self.x = x
        self.col = col
        self.col_W = col_W

        return out

    def backward(self, dout):
        FN, C, FH, FW = self.W.shape
        dout = dout.transpose(0,2,3,1).reshape(-1, FN)

        self.db = np.sum(dout, axis=0)
        self.dW = np.dot(self.col.T, dout)
        self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)

        dcol = np.dot(dout, self.col_W.T)
        dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)

        return dx


class Pooling:
    def __init__(self, pool_h, pool_w, stride=2, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad
        
        self.x = None
        self.arg_max = None

    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h*self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out

    def backward(self, dout):
        dout = dout.transpose(0, 2, 3, 1)
        
        pool_size = self.pool_h * self.pool_w
        dmax = np.zeros((dout.size, pool_size))
        dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
        dmax = dmax.reshape(dout.shape + (pool_size,)) 
        
        dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
        dx = col2im(dcol,self.x.shape,self.pool_h,self.pool_w,self.stride,self.pad)
        
        return dx

# input_data:(data数,チャンネル, 高さ, 幅)
def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_data.shape
    # //は、切捨て整数除算
    out_h = (H + 2*pad - filter_h)//stride + 1
    out_w = (W + 2*pad - filter_w)//stride + 1

    img = np.pad(input_data,
                 [(0,0), (0,0), (pad, pad), (pad, pad)],
                 'constant')
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride*out_h
        for x in range(filter_w):
            x_max = x + stride*out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N*out_h*out_w, -1)
    return col

# input_shape: 入力data形状 例:(10,1,28,28)
def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_shape
    out_h = (H + 2*pad - filter_h)//stride + 1
    out_w = (W + 2*pad - filter_w)//stride + 1
    col = col.reshape(N,out_h,out_w,C,filter_h,filter_w).transpose(0,3,4,5,1,2)

    img = np.zeros((N, C, H + 2*pad + stride - 1, W + 2*pad + stride - 1))
    for y in range(filter_h):
        y_max = y + stride*out_h
        for x in range(filter_w):
            x_max = x + stride*out_w
            img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]

    return img[:, :, pad:H + pad, pad:W + pad]


class Trainer:
    def __init__(self, network, x_train, t_train, x_test, t_test,
                 epochs=20, mini_batch_size=100,
                 optimizer='SGD', optimizer_param={'lr':0.01}, 
                 evaluate_sample_num_per_epoch=None, verbose=True):
        self.network = network
        self.verbose = verbose
        self.x_train = x_train
        self.t_train = t_train
        self.x_test = x_test
        self.t_test = t_test
        self.epochs = epochs
        self.batch_size = mini_batch_size
        self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch

        # optimizer
        optimizer_class_dict = {'sgd':SGD,
                                'momentum':Momentum,
                                'nesterov':Nesterov,
                                'adagrad':AdaGrad,
                                'rmsprop':RMSprop,
                                'adam':Adam}
        self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)
        
        self.train_size = x_train.shape[0]
        self.iter_per_epoch = max(self.train_size / mini_batch_size, 1)
        self.max_iter = int(epochs * self.iter_per_epoch)
        self.current_iter = 0
        self.current_epoch = 0
        
        self.train_loss_list = []
        self.train_acc_list  = []
        self.test_acc_list   = []

    def train_step(self):
        batch_mask = np.random.choice(self.train_size, self.batch_size)
        x_batch = self.x_train[batch_mask]
        t_batch = self.t_train[batch_mask]
        
        grads = self.network.gradient(x_batch, t_batch)
        self.optimizer.update(self.network.params, grads)
        
        loss = self.network.loss(x_batch, t_batch)
        self.train_loss_list.append(loss)
        #if self.verbose: print("train loss:" + str(loss))
        
        if self.current_iter % self.iter_per_epoch == 0:
            self.current_epoch += 1
            
            x_train_sample, t_train_sample = self.x_train, self.t_train
            x_test_sample, t_test_sample = self.x_test, self.t_test
            if not self.evaluate_sample_num_per_epoch is None:
                t = self.evaluate_sample_num_per_epoch
                x_train_sample, t_train_sample = self.x_train[:t], self.t_train[:t]
                x_test_sample, t_test_sample = self.x_test[:t], self.t_test[:t]
                
            train_acc = self.network.accuracy(x_train_sample, t_train_sample)
            test_acc = self.network.accuracy(x_test_sample, t_test_sample)
            self.train_acc_list.append(train_acc)
            self.test_acc_list.append(test_acc)

            if self.verbose:
                print("epoch:",    str(self.current_epoch),
                      "train acc:",str(train_acc),
                      "test acc:", str(test_acc) )
        self.current_iter += 1

    def train(self):
        for i in range(self.max_iter):
            self.train_step()

        test_acc = self.network.accuracy(self.x_test, self.t_test)

        if self.verbose:
            print("=============== Final Test Accuracy")
            print("test acc:" + str(test_acc))

# 確率的勾配降下法(Stochastic Gradient Descent)
class SGD:
    def __init__(self, lr=0.01):
        self.lr = lr
        
    def update(self, params, grads):
        for key in params.keys():
            params[key] -= self.lr * grads[key] 

class Momentum:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
        
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)
                
        for key in params.keys():
            self.v[key] = self.momentum*self.v[key] - self.lr*grads[key] 
            params[key] += self.v[key]

# http://arxiv.org/abs/1212.0901
class Nesterov:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
        
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)
            
        for key in params.keys():
            params[key] += self.momentum * self.momentum * self.v[key]
            params[key] -= (1 + self.momentum) * self.lr * grads[key]
            self.v[key] *= self.momentum
            self.v[key] -= self.lr * grads[key]

class AdaGrad:
    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None
        
    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)
            
        for key in params.keys():
            self.h[key] += grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

class RMSprop:
    def __init__(self, lr=0.01, decay_rate = 0.99):
        self.lr = lr
        self.decay_rate = decay_rate
        self.h = None
        
    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)
            
        for key in params.keys():
            self.h[key] *= self.decay_rate
            self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

# http://arxiv.org/abs/1412.6980v8
class Adam:
    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.iter = 0
        self.m = None
        self.v = None
        
    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = {}, {}
            for key, val in params.items():
                self.m[key] = np.zeros_like(val)
                self.v[key] = np.zeros_like(val)
        
        self.iter += 1
        lr_t  = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / \
            (1.0 - self.beta1**self.iter)
        
        for key in params.keys():
            #self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key]
            #self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2)
            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
            self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key])
            
            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)
            
            # correct bias
            #unbias_m += (1-self.beta1) * (grads[key] - self.m[key])
            
            # correct bias
            #unbisa_b += (1-self.beta2) * (grads[key]*grads[key] - self.v[key])
            #params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7)
            

class Relu:
    def __init__(self):
        self.mask = None

    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0
        return out

    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout
        return dx

class Sigmoid:
    def __init__(self):
        self.out = None

    def forward(self, x):
        out = sigmoid(x)
        self.out = out
        return out

    def backward(self, dout):
        dx = dout * (1.0 - self.out) * self.out
        return dx

class Affine:
    def __init__(self, W, b):
        self.W =W
        self.b = b
        
        self.x = None
        self.original_x_shape = None
        # 重み・バイアスパラメータの微分
        self.dW = None
        self.db = None

    def forward(self, x):
        # テンソル対応
        self.original_x_shape = x.shape
        x = x.reshape(x.shape[0], -1)
        self.x = x

        out = np.dot(self.x, self.W) + self.b
        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)
        
        dx = dx.reshape(*self.original_x_shape)
        return dx

class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None # softmaxの出力
        self.t = None # 教師データ

    def forward(self, x, t):
        self.t = t
        self.y = self.softmax(x)
        self.loss = self.cross_entropy_error(self.y, self.t)
        return self.loss

    def softmax(self, x):
        x = x - np.max(x, axis=-1, keepdims=True)   # オーバーフロー対策
        return np.exp(x) / np.sum(np.exp(x), axis=-1, keepdims=True)

    def cross_entropy_error(self, y, t):
        if y.ndim == 1:
            t = t.reshape(1, t.size)
            y = y.reshape(1, y.size)

        # 教師dataがone-hot-vectorの場合、正解ラベルのindexに変換
        if t.size == y.size:
            t = t.argmax(axis=1)

        batch_size = y.shape[0]
        return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size: # 教師データがone-hot-vectorの場合
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size
        return dx

# http://arxiv.org/abs/1207.0580
class Dropout:
    def __init__(self, dropout_ratio=0.5):
        self.dropout_ratio = dropout_ratio
        self.mask = None

    def forward(self, x, train_flg=True):
        if train_flg:
            self.mask = np.random.rand(*x.shape) > self.dropout_ratio
            return x * self.mask
        else:
            return x * (1.0 - self.dropout_ratio)

    def backward(self, dout):
        return dout * self.mask

# http://arxiv.org/abs/1502.03167
class BatchNormalization:
    def __init__(self,gamma,beta,momentum=0.9,running_mean=None,running_var=None):
        self.gamma = gamma
        self.beta = beta
        self.momentum = momentum
        self.input_shape = None # Conv層の場合は4次元、全結合層の場合は2次元

        # テスト時に使用する平均と分散
        self.running_mean = running_mean
        self.running_var = running_var  
        
        # backward時に使用する中間データ
        self.batch_size = None
        self.xc = None
        self.std = None
        self.dgamma = None
        self.dbeta = None

    def forward(self, x, train_flg=True):
        self.input_shape = x.shape
        if x.ndim != 2:
            N, C, H, W = x.shape
            x = x.reshape(N, -1)

        out = self.__forward(x, train_flg)
        
        return out.reshape(*self.input_shape)
            
    def __forward(self, x, train_flg):
        if self.running_mean is None:
            N, D = x.shape
            self.running_mean = np.zeros(D)
            self.running_var = np.zeros(D)
                        
        if train_flg:
            mu = x.mean(axis=0)
            xc = x - mu
            var = np.mean(xc**2, axis=0)
            std = np.sqrt(var + 10e-7)
            xn = xc / std
            
            self.batch_size = x.shape[0]
            self.xc = xc
            self.xn = xn
            self.std = std
            self.running_mean = \
                self.momentum * self.running_mean + (1-self.momentum) * mu
            self.running_var = \
                self.momentum * self.running_var + (1-self.momentum) * var
        else:
            xc = x - self.running_mean
            xn = xc / ((np.sqrt(self.running_var + 10e-7)))
            
        out = self.gamma * xn + self.beta 
        return out

    def backward(self, dout):
        if dout.ndim != 2:
            N, C, H, W = dout.shape
            dout = dout.reshape(N, -1)

        dx = self.__backward(dout)
        dx = dx.reshape(*self.input_shape)
        return dx

    def __backward(self, dout):
        dbeta = dout.sum(axis=0)
        dgamma = np.sum(self.xn * dout, axis=0)
        dxn = self.gamma * dout
        dxc = dxn / self.std
        dstd = -np.sum((dxn * self.xc) / (self.std * self.std), axis=0)
        dvar = 0.5 * dstd / self.std
        dxc += (2.0 / self.batch_size) * self.xc * dvar
        dmu = np.sum(dxc, axis=0)
        dx = dxc - dmu / self.batch_size
        
        self.dgamma = dgamma
        self.dbeta = dbeta
        return dx

class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad
        
        # 中間データ(backward時に使用)
        self.x = None   
        self.col = None
        self.col_W = None
        
        # 重み・バイアスパラメータの勾配
        self.dW = None
        self.db = None

    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = 1 + int((H + 2*self.pad - FH) / self.stride)
        out_w = 1 + int((W + 2*self.pad - FW) / self.stride)

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T

        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        self.x = x
        self.col = col
        self.col_W = col_W
        return out

    def backward(self, dout):
        FN, C, FH, FW = self.W.shape
        dout = dout.transpose(0,2,3,1).reshape(-1, FN)

        self.db = np.sum(dout, axis=0)
        self.dW = np.dot(self.col.T, dout)
        self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)

        dcol = np.dot(dout, self.col_W.T)
        dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)
        return dx

class Pooling:
    def __init__(self, pool_h, pool_w, stride=2, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad
        
        self.x = None
        self.arg_max = None

    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h*self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out

    def backward(self, dout):
        dout = dout.transpose(0, 2, 3, 1)
        
        pool_size = self.pool_h * self.pool_w
        dmax = np.zeros((dout.size, pool_size))
        dmax[np.arange(self.arg_max.size),self.arg_max.flatten()] = \
            dout.flatten()
        dmax = dmax.reshape(dout.shape + (pool_size,)) 
        
        dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
        dx = col2im(dcol,self.x.shape,self.pool_h,self.pool_w,self.stride,self.pad)
        return dx

            
if __name__ == '__main__':
    main()

↑こう書くと、↓こう表示されます

(dl_scratch) C:\Users\end0t\tmp\deep-learning-from-scratch\ch07>python foo.py
epoch: 1 train acc: 0.395 test acc: 0.38
epoch: 2 train acc: 0.802 test acc: 0.801
epoch: 3 train acc: 0.876 test acc: 0.874
epoch: 4 train acc: 0.893 test acc: 0.885
epoch: 5 train acc: 0.924 test acc: 0.898
epoch: 6 train acc: 0.92 test acc: 0.913
epoch: 7 train acc: 0.932 test acc: 0.923
epoch: 8 train acc: 0.951 test acc: 0.932
epoch: 9 train acc: 0.948 test acc: 0.934
epoch: 10 train acc: 0.954 test acc: 0.935
epoch: 11 train acc: 0.962 test acc: 0.938
epoch: 12 train acc: 0.972 test acc: 0.947
epoch: 13 train acc: 0.973 test acc: 0.947
epoch: 14 train acc: 0.983 test acc: 0.953
epoch: 15 train acc: 0.977 test acc: 0.956
epoch: 16 train acc: 0.982 test acc: 0.96
epoch: 17 train acc: 0.985 test acc: 0.959
epoch: 18 train acc: 0.988 test acc: 0.958
epoch: 19 train acc: 0.991 test acc: 0.958
epoch: 20 train acc: 0.987 test acc: 0.956
=============== Final Test Accuracy
test acc:0.956
Saved Network Parameters!